Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 27
1.
FEBS Lett ; 598(8): 889-901, 2024 Apr.
Article En | MEDLINE | ID: mdl-38563123

BeKm-1 is a peptide toxin from scorpion venom that blocks the pore of the potassium channel hERG (Kv11.1) in the human heart. Although individual protein structures have been resolved, the structure of the complex between hERG and BeKm-1 is unknown. Here, we used molecular dynamics and ensemble docking, guided by previous double-mutant cycle analysis data, to obtain an in silico model of the hERG-BeKm-1 complex. Adding to the previous mutagenesis study of BeKm-1, our model uncovers the key role of residue Arg20, which forms three interactions (a salt bridge and hydrogen bonds) with the channel vestibule simultaneously. Replacement of this residue even by lysine weakens the interactions significantly. In accordance, the recombinantly produced BeKm-1R20K mutant exhibited dramatically decreased activity on hERG. Our model may be useful for future drug design attempts.


Arginine , ERG1 Potassium Channel , Molecular Dynamics Simulation , Scorpion Venoms , Animals , Humans , Arginine/chemistry , Arginine/metabolism , ERG1 Potassium Channel/chemistry , ERG1 Potassium Channel/metabolism , HEK293 Cells , Molecular Docking Simulation , Mutation , Potassium Channel Blockers/chemistry , Potassium Channel Blockers/metabolism , Scorpion Venoms/chemistry , Scorpion Venoms/genetics , Scorpion Venoms/metabolism
2.
Int J Mol Sci ; 24(17)2023 Aug 24.
Article En | MEDLINE | ID: mdl-37685955

Acid-sensing ion channels (ASICs) are proton-gated ion channels that mediate nociception in the peripheral nervous system and contribute to fear and learning in the central nervous system. Sevanol was reported previously as a naturally-occurring ASIC inhibitor from thyme with favorable analgesic and anti-inflammatory activity. Using electrophysiological methods, we found that in the high micromolar range, the compound effectively inhibited homomeric ASIC1a and, in sub- and low-micromolar ranges, positively modulated the currents of α1ß2γ2 GABAA receptors. Next, we tested the compound in anxiety-related behavior models using a targeted delivery into the hippocampus with parallel electroencephalographic measurements. In the open field, 6 µM sevanol reduced both locomotor and θ-rhythmic activity similar to GABA, suggesting a primary action on the GABAergic system. At 300 µM, sevanol markedly suppressed passive avoidance behavior, implying alterations in conditioned fear memory. The observed effects could be linked to distinct mechanisms involving GABAAR and ASIC1a. These results elaborate the preclinical profile of sevanol as a candidate for drug development and support the role of ASIC channels in fear-related functions of the hippocampus.


Thymus Plant , Acid Sensing Ion Channels , Fear/drug effects , gamma-Aminobutyric Acid , Hippocampus/drug effects , Receptors, GABA-A/drug effects , Thymus Plant/chemistry
3.
Int J Mol Sci ; 24(10)2023 May 11.
Article En | MEDLINE | ID: mdl-37239947

Transient receptor potential vanilloid subtype 3 (TRPV3) is an ion channel with a sensory function that is most abundantly expressed in keratinocytes and peripheral neurons. TRPV3 plays a role in Ca2+ homeostasis due to non-selective ionic conductivity and participates in signaling pathways associated with itch, dermatitis, hair growth, and skin regeneration. TRPV3 is a marker of pathological dysfunctions, and its expression is increased in conditions of injury and inflammation. There are also pathogenic mutant forms of the channel associated with genetic diseases. TRPV3 is considered as a potential therapeutic target of pain and itch, but there is a rather limited range of natural and synthetic ligands for this channel, most of which do not have high affinity and selectivity. In this review, we discuss the progress in the understanding of the evolution, structure, and pharmacology of TRPV3 in the context of the channel's function in normal and pathological states.


Pruritus , Skin Diseases , Humans , Pruritus/metabolism , Skin Diseases/metabolism , Skin/metabolism , Keratinocytes/metabolism , Ion Channels/metabolism , TRPV Cation Channels/metabolism
4.
ChemMedChem ; 18(12): e202300063, 2023 06 15.
Article En | MEDLINE | ID: mdl-37006199

Chemoselective O-alkylation of 1-aryl-3-polyfluoroalkylpyrazol-5-oles under basic conditions resulted in a series of 5-alkoxypyrazoles (26 derivatives). They showed an acceptable ADME profile (in silico) and can be considered as drug-like. In experiments in vivo (CD-1 mice), it was found that the obtained compounds do not have toxic properties at a dose of more than 150 mg/kg (for most compounds at a dose of >300 mg/kg, and for lead compounds - >600 mg/kg). 22 Compounds from this series demonstrated from moderate to high analgesic effects (28-104 % at 1 h and 37-109 % at 2 h after administration) in vivo in the hot plate test (SD rats, 15 mg/kg, intraperitoneal (ip)). The lead compound was 4-([1-phenyl-3-(trifluoromethyl)pyrazol-5-yl]oxy)butan-1-ol, which not only increased the latent period in the hot plate test by 103 % at both measurement points but also showed a pronounced analgesic effect under conditions of capsaicin-induced nociception (CD-1 mice, 15 mg/kg, ip). According to molecular modeling, all synthesized compounds can interact with the TRPV1 ion channel. This biological target was confirmed in in vitro experiments on Chinese hamster ovary cells expressing rTRPV1. 5-Alkoxypyrazoles were partial agonists of the TRPV1 ion channel in various degree, and the most active was the same pyrazole as in in vivo tests.


Analgesics , TRPV Cation Channels , Cricetinae , Rats , Mice , Animals , Analgesics/pharmacology , Analgesics/therapeutic use , CHO Cells , Rats, Sprague-Dawley , Cricetulus
5.
Biomedicines ; 10(2)2022 Feb 21.
Article En | MEDLINE | ID: mdl-35203719

CO2 inhalation is currently the most common method of euthanasia for laboratory rats and mice, and it is often used for further terminal blood sampling for clinical biochemical assays. Lately, this method has been criticized due to animal welfare issues associated with some processes that develop after CO2 inhalation. The stress reaction and the value of the clinical laboratory parameters significantly depend on the used anesthetics, method, and the site of blood sampling. Especially in small rodents, an acute terminal state followed by a cascade of metabolic reactions that can affect the studied biochemical profile may develop and cause unnecessary suffering of animals. The aim of this study was to compare the stability of biochemical parameters of outbred Sprague Dawley rats and CD-1 mice serum collected after CO2 inhalation or the intramuscular injection of tiletamine-zolazepam-xylazine (TZX). The serum content of total protein and albumin, cholesterol, triglycerides, aspartate aminotransferase (AST), alanine aminotr ansferase (ALT), alkaline phosphatase (ALP), total bilirubin, and creatinine was decreased by the injection of TZX in comparison with CO2 inhalation. In addition, the levels of calcium, phosphates, chlorides and potassium were lowered by TZX vs. CO2 administration, while the level of sodium increased. Finally, the level of the majority of serum clinical biochemical parameters in rats and mice tend to be overestimated after CO2 inhalation, which may lead to masking the possible effect of anti-inflammatory drugs in animal tests. Injection anesthesia for small rodents with TZX is a more feasible method for terminal blood sampling, which also reduces the suffering of animals.

6.
Biology (Basel) ; 11(2)2022 Jan 20.
Article En | MEDLINE | ID: mdl-35205034

Human neuroblastoma SH-SY5Y is a prominent neurobiological tool used for studying neuropathophysiological processes. We investigated acid-sensing (ASIC) and transient receptor potential vanilloid-1 (TRPV1) and ankyrin-1 (TRPA1) ion channels present in untreated and differentiated neuroblastoma SH-SY5Y to propose a new means for their study in neuronal-like cells. Using a quantitative real-time PCR and a whole-cell patch-clamp technique, ion channel expression profiles, functionality, and the pharmacological actions of their ligands were characterized. A low-level expression of ASIC1a and ASIC2 was detected in untreated cells. The treatment with 10 µM of retinoic acid (RA) for 6 days resulted in neuronal differentiation that was accompanied by a remarkable increase in ASIC1a expression, while ASIC2 expression remained almost unaltered. In response to acid stimuli, differentiated cells showed prominent ASIC-like currents. Detailed kinetic and pharmacological characterization suggests that homomeric ASIC1a is a dominant isoform among the present ASIC channels. RA-treatment also reduced the expression of TRPV1 and TRPA1, and minor electrophysiological responses to their agonists were found in untreated cells. Neuroblastoma SH-SY5Y treated with RA can serve as a model system to study the effects of different ligands on native human ASIC1a in neuronal-like cells. This approach can improve the characterization of modulators for the development of new neuroprotective and analgesic drugs.

7.
Toxins (Basel) ; 15(1)2022 12 30.
Article En | MEDLINE | ID: mdl-36668848

Nicotinic acetylcholine receptors (nAChRs) play an important role in the functioning of the central and peripheral nervous systems, and other organs of living creatures. There are several subtypes of nAChRs, and almost all of them are considered as pharmacological targets in different pathological states. The crude venom of the sea anemone Metridium senile showed the ability to interact with nAChRs. Four novel peptides (Ms11a-1-Ms11a-4) with nAChR binding activity were isolated. These peptides stabilized by three disulfide bridges have no noticeable homology with any known peptides. Ms11a-1-Ms11a-4 showed different binding activity towards the muscle-type nAChR from the Torpedo californica ray. The study of functional activity and selectivity for the most potent peptide (Ms11a-3) revealed the highest antagonism towards the heterologous rat α9α10 nAChR compared to the muscle and α7 receptors. Structural NMR analysis of two toxins (Ms11a-2 and Ms11a-3) showed that they belong to a new variant of the inhibitor cystine knot (ICK) fold but have a prolonged loop between the fifth and sixth cysteine residues. Peptides Ms11a-1-Ms11a-4 could represent new pharmacological tools since they have structures different from other known nAChRs inhibitors.


Nicotinic Antagonists , Peptides , Receptors, Nicotinic , Sea Anemones , Animals , Rats , Cystine , Nicotinic Antagonists/chemistry , Nicotinic Antagonists/isolation & purification , Nicotinic Antagonists/pharmacology , Peptides/chemistry , Peptides/isolation & purification , Peptides/pharmacology , Receptors, Nicotinic/metabolism , Sea Anemones/chemistry
8.
Molecules ; 28(1)2022 Dec 21.
Article En | MEDLINE | ID: mdl-36615256

4-Arylhydrazinylidene-5-(polyfluoroalkyl)pyrazol-3-ones (4-AHPs) were found to be obtained by the regiospecific cyclization of 2-arylhydrazinylidene-3-(polyfluoroalkyl)-3-oxoesters with hydrazines, by the azo coupling of 4-nonsubstituted pyrazol-5-oles with aryldiazonium chlorides or by the firstly discovered acid-promoted self-condensation of 2-arylhydrazinylidene-3-oxoesters. All the 4-AHPs had an acceptable ADME profile. Varying the substituents in 4-AHPs promoted the switching or combining of their biological activity. The polyfluoroalkyl residue in 4-AHPs led to the appearance of an anticarboxylesterase action in the micromolar range. An NH-fragment and/or methyl group instead of the polyfluoroalkyl one in the 4-AHPs promoted antioxidant properties in the ABTS, FRAP and ORAC tests, as well as anti-cancer activity against HeLa that was at the Doxorubicin level coupled with lower cytotoxicity against normal human fibroblasts. Some Ph-N-substituted 4-AHPs could inhibit the growth of N. gonorrhoeae bacteria at MIC 0.9 µg/mL. The possibility of using 4-AHPs for cell visualization was shown. Most of the 4-AHPs exhibited a pronounced analgesic effect in a hot plate test in vivo at and above the diclofenac and metamizole levels except for the ones with two chlorine atoms in the aryl group. The methylsulfonyl residue was proved to raise the anti-inflammatory effect also. A mechanism of the antinociceptive action of the 4-AHPs through blocking the TRPV1 receptor was proposed and confirmed using in vitro experiment and molecular docking.


Antioxidants , Diclofenac , Humans , Molecular Docking Simulation , Antioxidants/chemistry , Pharmaceutical Preparations
9.
Int J Biol Macromol ; 2020 May 01.
Article En | MEDLINE | ID: mdl-32371130

In a recent computational study, we revealed some mechanistic aspects of TRPV1 (transient receptor potential channel 1) thermal activation and gating and proposed a set of probable functionally important residues - "hot spots" that have not been characterized experimentally yet. In this work, we analyzed TRPV1 point mutants G643A, I679A + A680G, and K688G/P combining molecular modeling, biochemistry, and electrophysiology. The substitution G643A reduced maximal conductivity that resulted in a normal response to moderate stimuli, but a relatively weak response to more intensive activation. I679A + A680G channel was severely toxic for oocytes most probably due to abnormally increased basal activity of the channel ("always open" gates). The replacement K688G presumably facilitated movements of TRP domain and disturbed its coupling to the pore, thus leading to spontaneous activation and enhanced desensitization of the channel. Finally, mutation K688P was suggested to impair TRP domain directed movement, and the mutated channel showed ~100-fold less sensitivity to the capsaicin, enhanced desensitization and weaker activation by the heat. Our results provide a better understanding of TRPV1 thermal and capsaicin-induced activation and gating. These observations provide a structural basis for understanding some aspects of TRPV1 channel functioning and depict potentially pathogenic mutations.

10.
PLoS One ; 12(5): e0177077, 2017.
Article En | MEDLINE | ID: mdl-28475608

TRPV1 (vanilloid) receptors are activated by different types of stimuli including capsaicin, acidification and heat. Various ligands demonstrate stimulus-dependent action on TRPV1. In the present work we studied the action of polypeptides isolated from sea anemone Heteractis crispa (APHC1, APHC2 and APHC3) on rat TRPV1 receptors stably expressed in CHO cells using electrophysiological recordings, fluorescent Ca2+ measurements and molecular modeling. The APHCs potentiated TRPV1 responses to low (3-300 nM) concentrations of capsaicin but inhibited responses to high (>3.0 µM) concentrations. The activity-dependent action was also found for TRPV1 responses to 2APB and acidification. Thus the action mode of APHCs is bimodal and depended on the activation stimuli strength-potentiation of low-amplitude responses and no effect/inhibition of high-amplitude responses. The double-gate model of TRPV1 activation suggests that APHC-polypeptides may stabilize an intermediate state during the receptor activation. Molecular modeling revealed putative binding site at the outer loops of TRPV1. Binding to this site can directly affect activation by protons and can be allosterically coupled with capsaicin site. The results are important for further investigations of both TRPV1 and its ligands for potential therapeutic use.


Capsaicin/pharmacology , TRPV Cation Channels/metabolism , Animals , CHO Cells , Cnidarian Venoms/pharmacology , Cricetulus , Ligands , Models, Molecular , Peptides/pharmacology , Rats
11.
Toxins (Basel) ; 9(5)2017 04 29.
Article En | MEDLINE | ID: mdl-28468269

A novel bioactive peptide named τ-AnmTx Ueq 12-1 (short name Ueq 12-1) was isolated and characterized from the sea anemone Urticina eques. Ueq 12-1 is unique among the variety of known sea anemone peptides in terms of its primary and spatial structure. It consists of 45 amino acids including 10 cysteine residues with an unusual distribution and represents a new group of sea anemone peptides. The 3D structure of Ueq 12-1, determined by NMR spectroscopy, represents a new disulfide-stabilized fold partly similar to the defensin-like fold. Ueq 12-1 showed the dual activity of both a moderate antibacterial activity against Gram-positive bacteria and a potentiating activity on the transient receptor potential ankyrin 1 (TRPA1). Ueq 12-1 is a unique peptide potentiator of the TRPA1 receptor that produces analgesic and anti-inflammatory effects in vivo. The antinociceptive properties allow us to consider Ueq 12-1 as a potential analgesic drug lead with antibacterial properties.


Analgesics , Anti-Bacterial Agents , Anti-Inflammatory Agents , Peptides , Sea Anemones , TRPA1 Cation Channel/metabolism , Amino Acid Sequence , Analgesics/chemistry , Analgesics/isolation & purification , Analgesics/pharmacology , Analgesics/therapeutic use , Animals , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/isolation & purification , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/isolation & purification , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Disulfides/chemistry , Edema/drug therapy , Peptides/chemistry , Peptides/isolation & purification , Peptides/pharmacology , Peptides/therapeutic use
12.
Nat Prod Commun ; 10(7): 1171-3, 2015 Jul.
Article En | MEDLINE | ID: mdl-26411002

The guanidine alkaloids, dihydropulchranin A (2), prepared from pulchranin A from the sponge Monanchora pulchra, and hexadecylguanidine (3), a synthetic analog of pulchranins, were studied for their TRPV channel-regulating activities. Compound 2 was active as an inhibitor of rTRPV1 and hTRPV3 receptors with EC50 values of 24.3 and 59.1 µM, respectively. Hexadecylguanidine (3) was not active against these receptors.


Alkaloids/chemical synthesis , Guanidine/analogs & derivatives , Guanidines/chemical synthesis , Porifera/chemistry , TRPV Cation Channels/antagonists & inhibitors , Animals , CHO Cells , Cricetulus , Guanidine/chemical synthesis , Humans , Rats
13.
Mar Drugs ; 11(12): 5100-15, 2013 Dec 16.
Article En | MEDLINE | ID: mdl-24351908

Transient receptor potential vanilloid 1 receptors (TRPV1) play a significant physiological role. The study of novel TRPV1 agonists and antagonists is essential. Here, we report on the characterization of polypeptide antagonists of TRPV1 based on in vitro and in vivo experiments. We evaluated the ability of APHC1 and APHC3 to inhibit TRPV1 using the whole-cell patch clamp approach and single cell Ca2+ imaging. In vivo tests were performed to assess the biological effects of APHC1 and APHC3 on temperature sensation, inflammation and core body temperature. In the electrophysiological study, both polypeptides partially blocked the capsaicin-induced response of TRPV1, but only APHC3 inhibited acid-induced (pH 5.5) activation of the receptor. APHC1 and APHC3 showed significant antinociceptive and analgesic activity in vivo at reasonable doses (0.01-0.1 mg/kg) and did not cause hyperthermia. Intravenous administration of these polypeptides prolonged hot-plate latency, blocked capsaicin- and formalin-induced behavior, reversed CFA-induced hyperalgesia and produced hypothermia. Notably, APHC3's ability to inhibit the low pH-induced activation of TRPV1 resulted in a reduced behavioural response in the acetic acid-induced writhing test, whereas APHC1 was much less effective. The polypeptides APHC1 and APHC3 could be referred to as a new class of TRPV1 modulators that produce a significant analgesic effect without hyperthermia.


Analgesics/pharmacology , Body Temperature/drug effects , Fever/metabolism , Peptides/pharmacology , TRPV Cation Channels/antagonists & inhibitors , Analgesia , Animals , Capsaicin/pharmacology , Cell Line , Disease Models, Animal , HEK293 Cells , Humans , Hydrogen-Ion Concentration , Hyperalgesia/metabolism , Inflammation/metabolism , Male , Mice , Pain/drug therapy , Pain/metabolism , TRPV Cation Channels/metabolism
14.
Nat Prod Commun ; 8(9): 1229-32, 2013 Sep.
Article En | MEDLINE | ID: mdl-24273853

New marine natural products, pulchranins B and C (2 and 3), were isolated from the marine sponge Monanchora pulchra and their structures were established using NMR and MS analysis. Compounds 2 and 3 were moderately active as inhibitors of TRPV1 (EC50 value of 95 and 183 microM, respectively) and less potent against TRPV3 and TRPA1 receptors.


Alkaloids/isolation & purification , Guanidines/isolation & purification , Porifera/chemistry , TRPV Cation Channels/antagonists & inhibitors , Alkaloids/chemistry , Animals , Guanidines/chemistry , Molecular Structure , Pacific Ocean
15.
Anal Bioanal Chem ; 405(7): 2379-89, 2013 Mar.
Article En | MEDLINE | ID: mdl-23307127

Human voltage-gated potassium channel Kv1.3 is an important pharmacological target for the treatment of autoimmune and metabolic diseases. Increasing clinical demands stipulate an active search for efficient and selective Kv1.3 blockers. Here we present a new, reliable, and easy-to-use analytical system designed to seek for and study Kv1.3 ligands that bind to the extracellular vestibule of the K(+)-conducting pore. It is based on Escherichia coli spheroplasts with the hybrid protein KcsA-Kv1.3 embedded into the membrane, fluorescently labeled Kv1.3 blocker agitoxin-2, and confocal laser scanning microscopy as a detection method. This system is a powerful alternative to radioligand and patch-clamp techniques. It enables one to search for Kv1.3 ligands both among individual compounds and in complex mixtures, as well as to characterize their affinity to Kv1.3 channel using the "mix and read" mode. To demonstrate the potential of the system, we performed characterization of several known Kv1.3 ligands, tested nine spider venoms for the presence of Kv1.3 ligands, and conducted guided purification of a channel blocker from scorpion venom.


Drug Evaluation, Preclinical/methods , Escherichia coli/genetics , Kv1.3 Potassium Channel/chemistry , Microscopy, Confocal/methods , Animals , Escherichia coli/chemistry , Escherichia coli/metabolism , Gene Expression , Humans , Kv1.3 Potassium Channel/genetics , Kv1.3 Potassium Channel/metabolism , Ligands , Potassium Channels, Voltage-Gated/chemistry , Potassium Channels, Voltage-Gated/genetics , Potassium Channels, Voltage-Gated/metabolism , Protein Binding , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Scorpion Venoms/chemistry , Scorpion Venoms/genetics , Scorpion Venoms/metabolism , Scorpions , Spheroplasts/chemistry , Spheroplasts/genetics , Spheroplasts/metabolism , Spider Venoms/chemistry , Spiders
16.
Biochim Biophys Acta ; 1818(11): 2868-75, 2012 Nov.
Article En | MEDLINE | ID: mdl-22842000

Recently, the novel peptide named purotoxin-1 (PT1) has been identified in the venom of the spider Geolycosa sp. and shown to exert marked modulatory effects on P2X3 receptors in rat sensory neurons. Here we studied another polypeptide from the same spider venom, purotoxin-2 (PT2), and demonstrated that it also affected activity of mammalian P2X3 receptors. The murine and human P2X3 receptors were heterologously expressed in cells of the CHO line, and nucleotide-gated currents were stimulated by CTP and ATP, respectively. Both PT1 and PT2 negligibly affected P2X3-mediated currents elicited by brief pulses of the particular nucleotide. When subthreshold CTP or ATP was added to the bath to exert the high-affinity desensitization of P2X3 receptors, both spider toxins strongly enhanced the desensitizing action of the ambient nucleotides. At the concentration of 50nM, PT1 and PT2 elicited 3-4-fold decrease in the IC(50) dose of ambient CTP or ATP. In contrast, 100nM PT1 and PT2 negligibly affected nucleotide-gated currents mediated by mP2X2 receptors or mP2X2/mP2X3 heteromers. Altogether, our data point out that the PT1 and PT2 toxins specifically target the fast-desensitizing P2X3 receptor, thus representing a unique tool to manipulate its activity.


Receptors, Purinergic P2X3/drug effects , Spider Venoms/pharmacology , Animals , Base Sequence , CHO Cells , Cricetinae , Cricetulus , DNA Primers , Mass Spectrometry , Polymerase Chain Reaction , Spectrophotometry, Ultraviolet
17.
J Biol Chem ; 285(42): 32293-302, 2010 Oct 15.
Article En | MEDLINE | ID: mdl-20657014

Venom of the yellow sac spider Cheiracanthium punctorium (Miturgidae) was found unique in terms of molecular composition. Its principal toxic component CpTx 1 (15.1 kDa) was purified, and its full amino acid sequence (134 residues) was established by protein chemistry and mass spectrometry techniques. CpTx 1 represents a novel class of spider toxin with modular architecture. It consists of two different yet homologous domains (modules) each containing a putative inhibitor cystine knot motif, characteristic of the widespread single domain spider neurotoxins. Venom gland cDNA sequencing provided precursor protein (prepropeptide) structures of three CpTx 1 isoforms (a-c) that differ by single residue substitutions. The toxin possesses potent insecticidal (paralytic and lethal), cytotoxic, and membrane-damaging activities. In both fly and frog neuromuscular preparations, it causes stable and irreversible depolarization of muscle fibers leading to contracture. This effect appears to be receptor-independent and is inhibited by high concentrations of divalent cations. CpTx 1 lyses cell membranes, as visualized by confocal microscopy, and destabilizes artificial membranes in a manner reminiscent of other membrane-active peptides by causing numerous defects of variable conductance and leading to bilayer rupture. The newly discovered class of modular polypeptides enhances our knowledge of the toxin universe.


Peptides/chemistry , Spider Venoms/chemistry , Spider Venoms/classification , Spiders/chemistry , Amino Acid Sequence , Animals , Base Sequence , Molecular Sequence Data , Neuromuscular Junction/drug effects , Peptides/genetics , Peptides/pharmacology , Protein Structure, Secondary , Ranidae , Sequence Alignment , Sequence Homology, Amino Acid , Spider Venoms/genetics , Spider Venoms/pharmacology , Spiders/anatomy & histology
18.
Ann Neurol ; 67(5): 680-3, 2010 May.
Article En | MEDLINE | ID: mdl-20437566

P2X3 purinoreceptors expressed in mammalian sensory neurons play a key role in several processes, including pain perception. From the venom of the Central Asian spider Geolycosa sp., we have isolated a novel peptide, named purotoxin-1 (PT1), which is to our knowledge the first natural molecule exerting powerful and selective inhibitory action on P2X3 receptors. PT1 dramatically slows down the removal of desensitization of these receptors. The peptide demonstrates potent antinociceptive properties in animal models of inflammatory pain.


Pain/drug therapy , Pain/metabolism , Peptides/therapeutic use , Receptors, Purinergic P2/metabolism , Spider Venoms/chemistry , Adenosine Triphosphate/pharmacology , Animals , Animals, Newborn , Cells, Cultured , Chondrus , Cytidine Triphosphate/pharmacology , Disease Models, Animal , Dose-Response Relationship, Drug , Ganglia, Spinal/cytology , Humans , Magnetic Resonance Spectroscopy/methods , Membrane Potentials/drug effects , Membrane Potentials/genetics , Neurogenic Inflammation/chemically induced , Neurogenic Inflammation/complications , Pain/etiology , Patch-Clamp Techniques/methods , Purinergic P2 Receptor Antagonists , Rats , Rats, Wistar , Receptors, Purinergic P2/genetics , Receptors, Purinergic P2X3 , Sensory Receptor Cells/drug effects , Sensory Receptor Cells/physiology , Transfection/methods
19.
J Neuroimmune Pharmacol ; 4(1): 83-91, 2009 Mar.
Article En | MEDLINE | ID: mdl-18649142

Potassium voltage-gated channels (Kv) are considered as molecular targets in a number of serious neuronal, immune, and cardiac disorders. Search for efficient low-molecular weight modulators of Kv channel function provides a basis for the development of an appropriate therapy for various Kv-mediated diseases. We report here on a new bacterial cell-based system, which is suitable for study of interactions between ligands and ligand-binding sites of eukaryotic Kv1.3 and Kv1.1 channels. To create this system, high-level expression of KcsA-Kv1.3 and KcsA-Kv1.1 hybrid proteins (ligand-binding sites of Kv1.3 or Kv1.1 fused with prokaryotic KcsA potassium channel) was achieved in the plasma membrane of Escherichia coli. An efficient procedure of E. coli conversion to intact spheroplasts was developed. We demonstrate that fluorescently labeled agitoxin 2 binds specifically to high-affinity and lower-affinity sites of KcsA-Kv1.3 and KcsA-Kv1.1, respectively, at the membrane of spheroplasts. Number of binding sites per cell is estimated to be (1.0 +/- 0.6) x 10(5) and (0.3 +/- 0.2) x 10(5) for KcsA-Kv1.3- and KcsA-Kv1.1-presenting cells, respectively, that allows reliable detection of ligand-receptor interactions by confocal laser scanning microscopy. This bacterial cell-based system is intended for screening of ligands to membrane-embedded pharmaceutical targets.


Cell Membrane/metabolism , Escherichia coli/metabolism , Potassium Channels, Voltage-Gated/genetics , Potassium Channels, Voltage-Gated/metabolism , Scorpion Venoms/metabolism , Animals , Chromatography, High Pressure Liquid , Cloning, Molecular , DNA Primers , DNA, Bacterial/genetics , Microscopy, Confocal , Plasmids/genetics , Protein Binding , Reverse Transcriptase Polymerase Chain Reaction , Spheroplasts/metabolism , Streptomyces lividans/genetics
20.
Biophys J ; 92(10): 3524-40, 2007 May 15.
Article En | MEDLINE | ID: mdl-17293393

Previous studies have shown that the unusually long S5-P linker lining human ether a-go-go related gene's (hERG's) outer vestibule is critical for its channel function: point mutations at high-impact positions here can interfere with the inactivation process and, in many cases, also reduce the pore's K+ selectivity. Because no data are available on the equivalent region in the available K channel crystal structures to allow for homology modeling, we used alternative approaches to model its three-dimensional structure. The first part of this article describes mutant cycle analysis used to identify residues on hERG's outer vestibule that interact with specific residues on the interaction surface of BeKm-1, a peptide toxin with known NMR structure and a high binding affinity to hERG. The second part describes molecular modeling of hERG's pore domain. The transmembrane region was modeled after the crystal structure of KvAP pore domain. The S5-P linker was docked to the transmembrane region based on data from previous NMR and mutagenesis experiments, as well as a set of modeling criteria. The models were further restrained by contact points between hERG's outer vestibule and the bound BeKm-1 toxin molecule deduced from the mutant cycle analysis. Based on these analyses, we propose a working model for the open conformation of the outer vestibule of the hERG channel, in which the S5-P linkers interact with the pore loops to influence ion flux through the pore.


Ether-A-Go-Go Potassium Channels/chemistry , Ether-A-Go-Go Potassium Channels/metabolism , Ion Channel Gating/physiology , Models, Chemical , Models, Molecular , Scorpion Venoms/chemistry , Scorpion Venoms/metabolism , Amino Acid Substitution , Animals , Cells, Cultured , Computer Simulation , ERG1 Potassium Channel , Ether-A-Go-Go Potassium Channels/ultrastructure , Models, Biological , Mutagenesis, Site-Directed , Oocytes/physiology , Peptide Mapping/methods , Sequence Analysis, Protein , Structure-Activity Relationship , Xenopus laevis
...